

Mathematical Methods

VCE Sample Practice Examination 1

Reading time: 15 minutes

Writing time: 1 hour

STUDENT NUMBER

www.mathpractice.com.au

Students are not permitted to bring any technology (calculator, software, mobile phones, or other unauthorized electronic devices) or notes of any kind into the examination room.

Instructions to students:

- Answer all questions in the spaces provided.
- Write your answers in English.
- In all questions where a numerical answer is required, an exact answer must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1

Consider the function $f(x) = x^2 \log_e(2x)$.

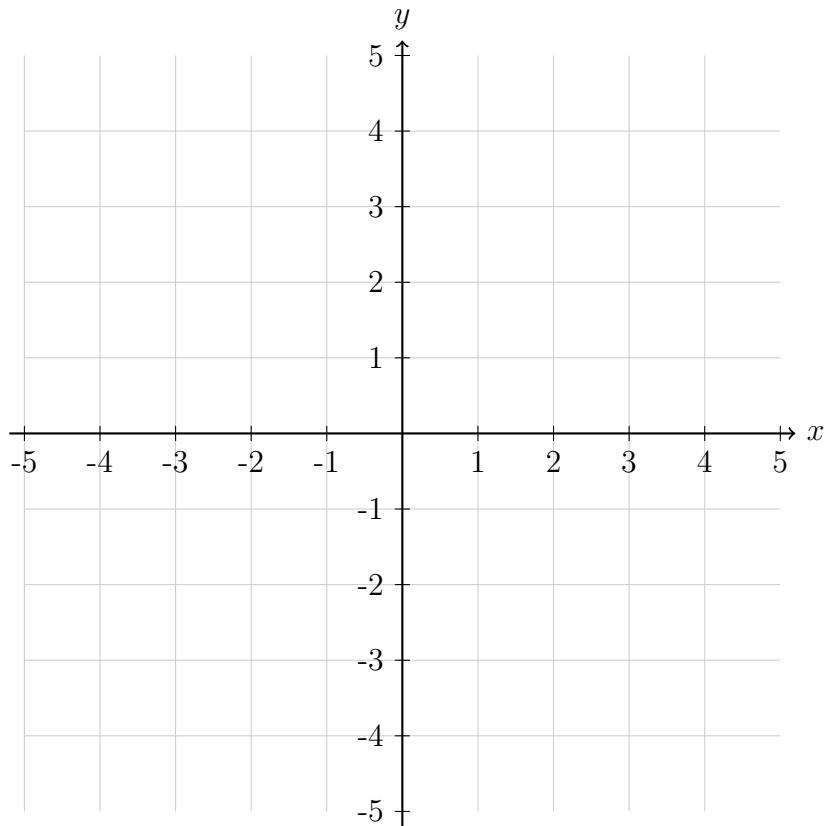
a) Find $f'(x)$. (1 mark)

b) Evaluate $\frac{d}{dx}[\log_e(x^2 + 1)]$ when $x = 2$. (2 marks)

Question 2

Consider the function $f(x) = \log_e(2x + 5)$.

a) Sketch the graph of $f(x)$. (3 marks)



b) Find the vertical asymptote, draw and label it on the graph. (1 mark)

c) Find the x - and y -intercepts and write their coordinates on the graph. (1 mark)

Question 3

Consider the functions

$$f : [-2, 2] \rightarrow \mathbb{R}, \quad f(x) = \sqrt{4 - x^2},$$

$$g : \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R}, \quad g(x) = \frac{1}{x}.$$

a) Find the range of the function f . (1 mark)

b) Find an expression for $(f \circ g)(x)$ and state its domain. (2 marks)

c) Given the codomain of f is \mathbb{R} , state the maximal domain of f for which the composition $(g \circ f)(x)$ exists. (1 mark)

Question 4

Find the general solution of the following equation: $\cos(2x + \frac{\pi}{6}) = -\frac{1}{2}$.

Give your answer in the form: $x = \dots$, where $x \in \mathbb{R}$.

(3 marks)

Question 5

Consider the system of simultaneous equations:

$$2x + (k + 1)y = 6$$

$$kx + 6y = m$$

where k and m are real constants.

Find the integer value(s) of k and m for which the system has **no solution**. (4 marks)

Question 6

Let X be a binomial random variable where $X \sim \text{Bi}(4, \frac{1}{2})$.

a) Find the probability that exactly 2 successes occur. (1 mark)

b) Find the probability that at most 1 success occurs. (2 marks)

Question 7

A health study investigates the proportion of people in a small town who take vitamin supplements regularly. A random sample of people is surveyed, and 60% of them say they take supplements.

a) Let $X \sim \text{Bi}(n, p)$ represent the number of people who take supplements in a sample of size n , where the true proportion is $p = 0.6$. State the mean μ and standard deviation σ of X in terms of n . (2 marks)

b) Using a normal approximation, write the formula for a 95% confidence interval for the proportion p , given that the sample population is 24, and the sample proportion is $\hat{p} = 0.6$. (2 marks)

c) Suppose we want the standard deviation of the sample proportion to be no more than 0.05. Find the minimum sample size n required to achieve this. (2 marks)

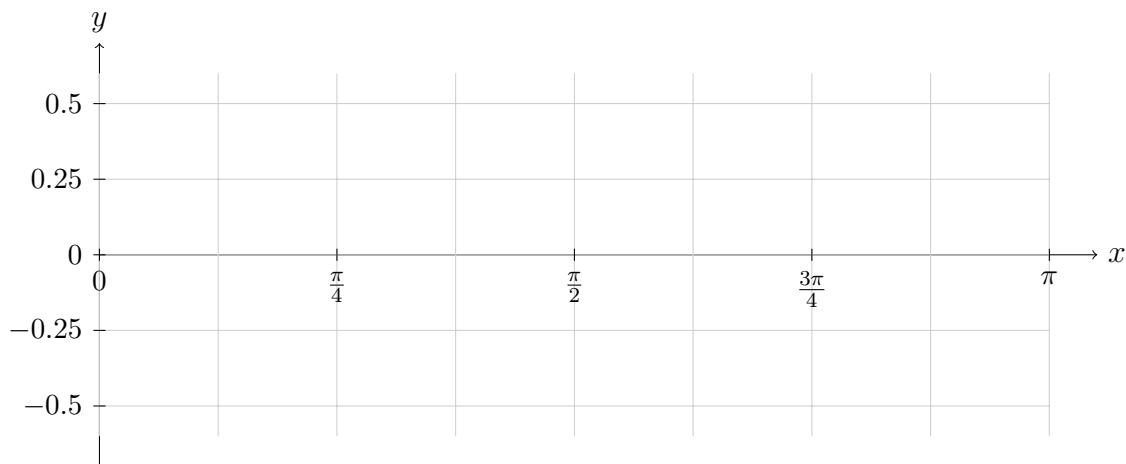
Question 8

Consider the function $f(x) = \sin(x) \cos(x)$ for $x \in [0, \pi]$.

a) Show that $f'(x) = \cos^2(x) - \sin^2(x)$. (2 marks)

b) Find the exact values of the coordinates of the stationary points in the interval $[0, \pi]$. (2 marks)

c) On the axes below, sketch the graph of $y = f(x) = \sin(x) \cos(x)$ for $x \in [0, \pi]$, labelling the stationary points with their exact coordinates. (2 marks)



d) Find the exact value of the area bounded by the curve $y = \sin(x) \cos(x)$ and the x-axis for $x \in [0, \pi]$. (2 marks)

Question 9

Solve the following equation for x .

$$2 \log_5(x - 1) = 1 + \log_5(x + 1.8)$$

(4 marks)

Answer Key

Solution 1

Consider the function $y = x^2 \log_e(2x)$

Part (a) *(1 mark)*

Using the Product Rule:

$$f'(x) = x^2 \cdot \frac{d}{dx}[\log_e(2x)] + \log_e(2x) \cdot \frac{d}{dx}[x^2]$$

Step 1: Find $\frac{d}{dx}[\log_e(2x)]$

$$\frac{d}{dx}[\log_e(2x)] = \frac{1}{2x} \cdot 2$$

$$= \frac{1}{x}$$

Step 2: Find $\frac{d}{dx}[x^2] = 2x$

Step 3: Substitute into Product Rule

$$\begin{aligned} f'(x) &= x^2 \cdot \frac{1}{x} + \log_e(2x) \cdot 2x \\ &= x + 2x \log_e(2x) \end{aligned}$$

Part (b) *(2 marks)*

Find $\frac{d}{dx}[\log_e(x^2 + 1)]$ when $x = 2$

Using the Chain Rule:

$$\begin{aligned} \frac{d}{dx}[\log_e(x^2 + 1)] &= \frac{1}{x^2 + 1} \cdot \frac{d}{dx}[x^2 + 1] = \frac{1}{x^2 + 1} \cdot 2x \\ &= \frac{2x}{x^2 + 1} \end{aligned}$$

When $x = 2$:

$$= \frac{2(2)}{2^2 + 1} = \frac{4}{5}$$

Solution 2

a) The domain of $f(x) = \log_e(2x + 5)$ requires the argument of the logarithm to be positive:

$$2x + 5 > 0 \implies x > -\frac{5}{2} = -2.5$$

The graph increases slowly and is continuous for $x > -2.5$.

(3 marks)

b) The vertical asymptote is where the argument of the logarithm is zero:

$$2x + 5 = 0 \implies x = -2.5$$

(1 mark)

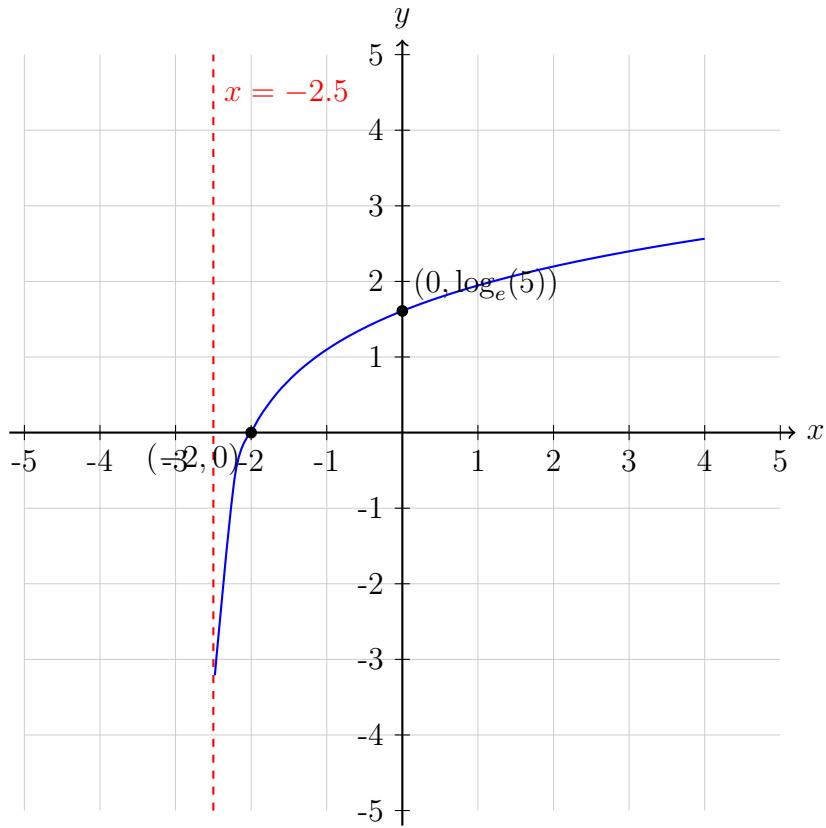
c) *Finding the y-intercept:* Set $x = 0$:

$$f(0) = \log_e(5)$$

Finding the x-intercept: Set $f(x) = 0$:

$$\log_e(2x + 5) = 0 \implies 2x + 5 = 1 \implies 2x = -4 \implies x = -2$$

(1 mark)



Solution 3

a) Find the range of the function f . *(1 mark)*

We are given:

$$f(x) = \sqrt{4 - x^2}, \quad x \in [-2, 2]$$

Note: - The expression inside the square root, $4 - x^2$, is non-negative for $x \in [-2, 2]$. - The maximum occurs when $x = 0$: $f(0) = \sqrt{4} = 2$ - The minimum occurs when $x = \pm 2$: $f(\pm 2) = \sqrt{0} = 0$

Therefore, the range of f is

$$[0, 2]$$

b) Find an expression for $(f \circ g)(x)$ and state its domain. *(2 marks)*

We are finding:

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \sqrt{4 - \left(\frac{1}{x}\right)^2} = \sqrt{4 - \frac{1}{x^2}}$$

This expression is only defined if:

$$4 - \frac{1}{x^2} \geq 0 \quad \Rightarrow \quad \frac{1}{x^2} \leq 4 \quad \Rightarrow \quad x^2 \geq \frac{1}{4}$$

Solving by factoring:

$$x^2 - \frac{1}{4} \geq 0 \quad \Rightarrow \quad \left(x - \frac{1}{2}\right)\left(x + \frac{1}{2}\right) \geq 0$$

Using a sign diagram or inequality rules, the solution is:

$$x \leq -\frac{1}{2} \quad \text{or} \quad x \geq \frac{1}{2}$$

Also, $x \neq 0$, since $g(x) = \frac{1}{x}$ is undefined at 0.

Domain:

$$(-\infty, -\frac{1}{2}] \cup [\frac{1}{2}, \infty)$$

c) Given the codomain of f is \mathbb{R} , state the maximal domain of f for which the composition $(g \circ f)(x)$ exists. *(1 mark)*

We are finding:

$$(g \circ f)(x) = g(f(x)) = \frac{1}{f(x)} = \frac{1}{\sqrt{4 - x^2}}$$

This is defined when: - $x \in [-2, 2]$ (from domain of f) - $f(x) \neq 0$

Since $f(x) = 0$ when $x = \pm 2$, we must exclude those points.

Maximal domain:

$$(-2, 2)$$

Solution 4

Solution:

3 marks

We are given the equation:

$$\cos(2x + \frac{\pi}{6}) = -\frac{1}{2}$$

Step 1: Solve the auxiliary equation

(1 mark)

Recall that:

$$\cos(\theta) = -\frac{1}{2} \Rightarrow \theta = \frac{2\pi}{3} + 2n\pi \quad \text{or} \quad \theta = \frac{4\pi}{3} + 2n\pi \quad \text{for } n \in \mathbb{Z}$$

Let $\theta = 2x + \frac{\pi}{6}$. So:

$$2x + \frac{\pi}{6} = \frac{2\pi}{3} + 2n\pi \quad \text{or} \quad 2x + \frac{\pi}{6} = \frac{4\pi}{3} + 2n\pi$$

Step 2: Solve for x

(1 mark)

First solution:

$$2x + \frac{\pi}{6} = \frac{2\pi}{3} + 2n\pi$$

$$2x = \frac{2\pi}{3} - \frac{\pi}{6} + 2n\pi = \frac{4\pi}{6} - \frac{\pi}{6} + 2n\pi = \frac{3\pi}{6} + 2n\pi = \frac{\pi}{2} + 2n\pi$$

$$x = \frac{\pi}{4} + n\pi$$

Second solution:

$$2x + \frac{\pi}{6} = \frac{4\pi}{3} + 2n\pi$$

$$2x = \frac{4\pi}{3} - \frac{\pi}{6} + 2n\pi = \frac{8\pi}{6} - \frac{\pi}{6} + 2n\pi = \frac{7\pi}{6} + 2n\pi$$

$$x = \frac{7\pi}{12} + n\pi$$

Final Answer:

(1 mark)

$$x = \frac{\pi}{4} + n\pi \quad \text{or} \quad x = \frac{7\pi}{12} + n\pi, \quad \text{where } n \in \mathbb{Z}$$

Solution 5

Step 1: Write down the system of equations:

$$\begin{cases} 2x + (k+1)y = 6 \\ kx + 6y = m \end{cases}$$

Step 2: Condition for no solution:

For no solution, the coefficients must satisfy:

$$\frac{\text{coefficient of } x \text{ in eq. 1}}{\text{coefficient of } x \text{ in eq. 2}} = \frac{\text{coefficient of } y \text{ in eq. 1}}{\text{coefficient of } y \text{ in eq. 2}} \neq \frac{\text{constant term in eq. 1}}{\text{constant term in eq. 2}}$$

Step 3: Write the ratio equations:

(1 mark)

$$\frac{2}{k} = \frac{k+1}{6} \quad \text{and} \quad \frac{2}{k} \neq \frac{6}{m}$$

Step 4: Solve the equality of the coefficients:

(1 mark)

$$\frac{2}{k} = \frac{k+1}{6}$$

Cross-multiplied:

$$12 = k(k+1)$$

$$k^2 + k - 12 = 0$$

Step 5: Solve the quadratic equation for k :

(1 mark)

$$(k+4)(k-3) = 0$$

So,

$$k = 3 \quad \text{or} \quad k = -4$$

Step 6: Write the inequality for no solution:

$$\frac{2}{k} \neq \frac{6}{m} \implies \frac{6}{m} \neq \frac{2}{k}$$

Rearranged:

$$m \neq \frac{6k}{2} = 3k$$

Step 7: Final answer:

(1 mark)

$$\boxed{\begin{cases} k = 3 \text{ or } k = -4 \\ m \neq 9 \text{ and } k \neq -12 \end{cases}}$$

Solution 6

a) Use the binomial probability formula: *(1 mark)*

$$P(X = 2) = \binom{4}{2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^2 = \binom{4}{2} \cdot \left(\frac{1}{2}\right)^4 = 6 \cdot \frac{1}{16} = \frac{6}{16} = \frac{3}{8}$$

Answer: $P(X = 2) = \frac{3}{8}$

b) We want: *(2 marks)*

$$P(X \leq 1) = P(X = 0) + P(X = 1)$$

$$P(X = 0) = \binom{4}{0} \left(\frac{1}{2}\right)^0 \left(\frac{1}{2}\right)^4 = 1 \cdot 1 \cdot \frac{1}{16} = \frac{1}{16}$$

$$P(X = 1) = \binom{4}{1} \left(\frac{1}{2}\right)^1 \left(\frac{1}{2}\right)^3 = 4 \cdot \frac{1}{2} \cdot \frac{1}{8} = 4 \cdot \frac{1}{16} = \frac{4}{16} = \frac{1}{4}$$

$$P(X \leq 1) = \frac{1}{16} + \frac{1}{4} = \frac{1}{16} + \frac{4}{16} = \frac{5}{16}$$

Answer: $P(X \leq 1) = \frac{5}{16}$

Solution 7

a) The mean and standard deviation of a binomial distribution $X \sim \text{Bi}(n, p)$ are: (2 marks)

$$\mu = np = 0.6n, \quad \sigma = \sqrt{np(1-p)} = \sqrt{n \cdot 0.6 \cdot 0.4} = \sqrt{0.24n}$$

b) Using a normal approximation, the standard deviation of the sample proportion is: (2 marks)

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.6 \cdot 0.4}{24}} = \sqrt{\frac{0.24}{24}} = \sqrt{0.01} = 0.1$$

The formula for a 95% confidence interval is:

$$\hat{p} \pm z \cdot \sigma_{\hat{p}} = 0.6 \pm 2 \cdot 0.1 = 0.6 \pm 0.2$$

$$(0.4, 0.8)$$

c) We want: (2 marks)

$$\sigma_{\hat{p}} = \sqrt{\frac{0.24}{n}} \leq 0.05$$

Square both sides:

$$\frac{0.24}{n} \leq 0.0025 \quad \Rightarrow \quad n \geq \frac{0.24}{0.0025} = \frac{24}{0.25} = 96$$

Therefore, a sample size of at least 96 is required.

Solution 8

Consider the function $f(x) = \sin(x) \cos(x)$ for $x \in [0, \pi]$.

a) Show that $f'(x) = \cos^2(x) - \sin^2(x)$. *(2 marks)*

Solution:

Using the product rule:

$$f(x) = \sin(x) \cos(x) \implies f'(x) = \sin'(x) \cos(x) + \sin(x) \cos'(x).$$

Since $\sin'(x) = \cos(x)$ and $\cos'(x) = -\sin(x)$, we have:

$$f'(x) = \cos(x) \cos(x) + \sin(x)(-\sin(x)) = \cos^2(x) - \sin^2(x).$$

b) Find the exact values of the coordinates of the stationary points in the interval $[0, \pi]$. *(2 marks)*

Solution:

Stationary points occur where $f'(x) = 0$, i.e.

$$\cos^2(x) - \sin^2(x) = 0.$$

This is equivalent to

$$\cos^2(x) = \sin^2(x).$$

Divide both sides by $\cos^2(x)$ (where defined):

$$1 = \tan^2(x) \implies \tan(x) = \pm 1.$$

Within $[0, \pi]$, the solutions are

$$x = \frac{\pi}{4}, \quad x = \frac{3\pi}{4}.$$

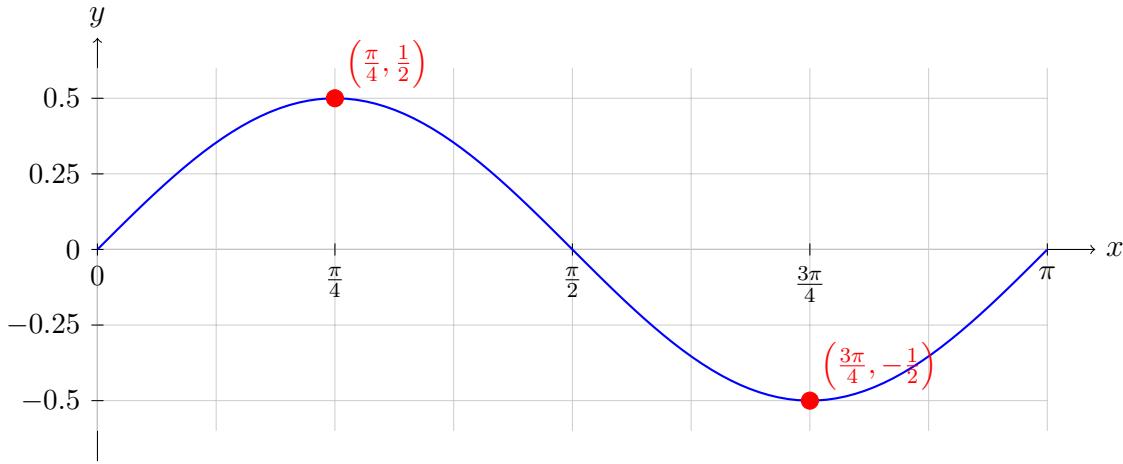
Now substitute into $f(x) = \sin(x) \cos(x)$:

$$f\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{1}{2}$$

$$f\left(\frac{3\pi}{4}\right) = \sin\left(\frac{3\pi}{4}\right) \cos\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2} \cdot \left(-\frac{\sqrt{2}}{2}\right) = -\frac{1}{2}$$

Therefore, the stationary points are $\left(\frac{\pi}{4}, \frac{1}{2}\right)$ and $\left(\frac{3\pi}{4}, -\frac{1}{2}\right)$.

c) On the axes below, sketch the graph of $y = f(x) = \sin(x) \cos(x)$ for $x \in [0, \pi]$, labelling the stationary points with their exact coordinates. *(2 marks)*



d) Find the exact value of the area bounded by the curve $y = \sin(x) \cos(x)$ and the x-axis for $x \in [0, \pi]$. *(2 marks)*

Solution:

The curve $y = \sin(x) \cos(x)$ crosses the x-axis at $x = 0, \frac{\pi}{2}, \pi$. Note that on $[0, \frac{\pi}{2}]$, $y \geq 0$ and on $[\frac{\pi}{2}, \pi]$, $y \leq 0$.

The area bounded by the curve and the x-axis is given by

$$\text{Area} = \int_0^{\frac{\pi}{2}} \sin(x) \cos(x) dx - \int_{\frac{\pi}{2}}^{\pi} \sin(x) \cos(x) dx,$$

because the integral on $[\frac{\pi}{2}, \pi]$ is negative and subtracting it adds its absolute value.

Evaluate the first integral:

Let

$$u = \sin(x) \implies du = \cos(x)dx.$$

When $x = 0, u = \sin(0) = 0$, and when $x = \frac{\pi}{2}, u = \sin\left(\frac{\pi}{2}\right) = 1$.

Thus,

$$\int_0^{\frac{\pi}{2}} \sin(x) \cos(x) dx = \int_0^1 u du = \left[\frac{u^2}{2} \right]_0^1 = \frac{1}{2}.$$

—
Evaluate the second integral:

Using the same substitution $u = \sin(x)$, when $x = \frac{\pi}{2}, u = 1$, and when $x = \pi, u = \sin(\pi) = 0$.

Therefore,

$$\int_{\frac{\pi}{2}}^{\pi} \sin(x) \cos(x) dx = \int_1^0 u du = - \int_0^1 u du = - \left[\frac{u^2}{2} \right]_0^1 = -\frac{1}{2}.$$

—
Calculate total area:

$$\text{Area} = \frac{1}{2} - \left(-\frac{1}{2}\right) = \frac{1}{2} + \frac{1}{2} = 1.$$

Final answer:

1.

Solution 9

We are given:

(4 marks)

$$2 \log_5(x - 1) = 1 + \log_5(x + 1.8)$$

Step 1: Apply the power rule to bring the coefficient inside the logarithm:

$$\log_5((x - 1)^2) = 1 + \log_5(x + 1.8)$$

Step 2: Convert the constant term to a logarithm:

$$1 = \log_5(5)$$

So:

$$\log_5((x - 1)^2) = \log_5(5) + \log_5(x + 1.8)$$

Step 3: Combine the right-hand side logs:

$$\log_5((x - 1)^2) = \log_5(5(x + 1.8)) = \log_5(5x + 9)$$

Step 4: Since the logarithms are equal (same base), equate the arguments:

$$(x - 1)^2 = 5x + 9$$

Step 5: Expand and rearrange into standard quadratic form:

$$x^2 - 2x + 1 = 5x + 9$$

$$x^2 - 2x + 1 - 5x - 9 = 0$$

$$x^2 - 7x - 8 = 0$$

Step 6: Factorise the quadratic. Find two numbers that multiply to -8 and add to -7 :

$$-8 = (-8) \times 1, \quad (-8) + 1 = -7$$

So:

$$x^2 - 7x - 8 = (x - 8)(x + 1) = 0$$

Step 7: Set each factor to zero:

$$x - 8 = 0 \Rightarrow x = 8$$

$$x + 1 = 0 \Rightarrow x = -1$$

Step 8: Check domain restrictions:

$$x - 1 > 0 \Rightarrow x > 1, \quad x + 1.8 > 0 \Rightarrow x > -1.8$$

Only $x = 8$ satisfies both.

Final answer: $x = 8$